
Abstract
Today’s fast-growing data-intensive network services place
heavy demands on the backend servers that support them.
This paper introduces ISTORE, a novel server architecture
that couples LEGO-like plug-and-play hardware with a
generic framework for constructing adaptive software that
leverages continuous self-monitoring. ISTORE exploits
introspection to provide high availability, performance,
and scalability while drastically reducing the cost and
complexity of administration. An ISTORE-based server
monitors and adapts to changes in the imposed workload
and to unexpected system events such as hardware failure.
This adaptability is enabled by a combination of intelligent
self-monitoring hardware components and an extensible
software framework that allows the target application to
specify monitoring and adaptation policies to the system.

1. Introduction

We are entering a new era of computing, one in which
traditional PCs, workstations, and servers are giving way to
“thin” clients backed by powerful, distributed, networked
information services. Information has surpassed raw com-
putational horsepower as the important commodity, with
total growth in online data storage more than doubling
every nine months [14]. This era of data-intensive network
services is being driven by new classes of applications such
as electronic commerce, information search and retrieval,
and online decision support. Such online services impose
stringent requirements that are difficult to meet using
today’s commodity computing technologies: they require
availability that permits a mean time to failure measured in
no less than years, performance that allows for simulta-
neously servicing millions of clients, and scalability that
keeps up with the rapid growth of the user base and the
data those users need to access. Moreover, studies show
that, especially in this demanding environment, mainte-
nance and administration costs are enormous, amounting to
anywhere from two to twelve times the cost of the hard-

ware [8][9][10][19]. Such maintenance costs are inconsis-
tent with the entrepreneurial nature of the Internet, in
which widely utilized, large-scale network services may be
operated by single individuals or small companies.

In this paper we turn our attention to the needs of the
providers of new data-intensive services, and in particular
to the need for servers that overcome the scalability and
manageability problems of existing solutions. We argue
that continuous monitoring and adaptation, or introspec-
tion, is a crucial component of such servers. Introspective
systems are naturally self-administering, as they can moni-
tor for exceptional situations or changes in their imposed
workload and immediately react to maintain availability
and performance goals. For example, an introspective sys-
tem can track data access patterns and monitor media
integrity, predicting and responding to data hot-spots or
device failures by migrating and replicating data. As a
result of these and similar mechanisms, human mainte-
nance of an introspective system consists of nothing more
than adding new hardware when resources become low (a
situation detected automatically by the introspective run-
time system) or replacing faulty hardware within a reason-
able amount of time after failures occur—all other aspects
of administration, including performance tuning and incor-
poration of new hardware, are handled automatically.

This paper presents the ISTORE intelligent storage
architecture, a hardware/software framework that simpli-
fies the construction of next-generation introspective serv-
ers. The ISTORE framework can be flexibly customized to
create a single-purpose server that is uniquely adapted to
its application niche. Because ISTORE-based servers pro-
vide exactly one application or service, they enjoy full
cooperation among all levels of the system, from the hard-
ware to the runtime system to the application. These com-
ponents work in concert to provide the application-
appropriate semantics, optimizations, and responses to
external stimuli needed for an introspective system.

The base ISTORE system consists of intelligent LEGO-
like plug-and-play hardware components (such as disks,
blocks of memory, and compute nodes) that can be hot-

ISTORE: Introspective Storage for Data-Intensive Network Services

Aaron Brown, David Oppenheimer, Kimberly Keeton, Randi Thomas,
John Kubiatowicz, and David A. Patterson

Computer Science Division, University of California at Berkeley
387 Soda Hall #1776, Berkeley, CA 94720-1776

{abrown,davidopp,kkeeton,randit,kubitron,patterson}@cs.berkeley.edu



swapped into a scalable, fully redundant hardware back-
plane. Each of the hardware “bricks” in an ISTORE system
includes an embedded processor that is responsible for
observing and reacting to the unique runtime behavior of
its attached device. As such, these processors comprise
essential components of ISTORE’s introspective substrate.
Application-specific code can also be downloaded into
these processors to provide scalable data access primitives
such as database scan, sort, and join.

On top of this hardware platform, ISTORE provides a
comprehensive software framework for constructing adap-
tive software that leverages continuous self-monitoring.
The ISTORE runtime system automates the collection of
monitoring data from the hardware bricks and provides
applications with customized, application-specific views of
that data; it further allows applications to define triggers
over those views that automatically invoke adaptation rou-
tines when application-specific conditions are met. For
common adaptation goals, the ISTORE system software
goes further by providing an extensible mechanism for
automatically generating monitoring and adaptation code
based on application policy specifications expressed as
constraints in declarative, domain-specific languages.
Through this mechanism, an application designer can
obtain the full benefits of an application-tailored introspec-
tive runtime system without having to write large amounts
of code and without having to resort to ad-hoc techniques.

ISTORE’s introspective nature sets it apart from today’s
existing general-purpose server architectures. By focusing
on servers customized to single applications, and by pro-
viding the framework for monitoring and adapting to envi-
ronmental changes in an application-specific way, ISTORE
allows for the construction of low-maintenance, highly
available, scalable, high-performance systems.

The remainder of this paper describes the proposed
ISTORE architecture in greater detail. We begin in Section
2 with a description of ISTORE’s modular, plug-and-play
hardware architecture. Section 3 presents the architecture
of the extensible runtime software layer that runs on top of
that hardware and illustrates the framework it provides for
building introspective software. Finally, we present related
work in Section 4 and conclude in Section 5.

2. ISTORE hardware architecture

Attaining an introspective, self-maintaining system
requires support from both hardware and software. Our
proposed ISTORE hardware architecture reflects this com-
bined requirement by providing modular, flexible devices
as well as dedicated, per-device processing to support the
software infrastructure described in Section 3.

Traditional computer systems are built from a CPU-cen-
tric viewpoint: the CPUs sit atop a large hierarchy of bus-

ses, far away from the I/O devices attached to the bottom-
level leaves of the hierarchy. This traditional configuration
is not optimal for data-intensive, I/O-centric systems such
as those built using the ISTORE architecture.

Thus, the ISTORE hardware architecture makes I/O
devices first-class citizens by eliminating busses and
attaching all components of the system directly to a high-
bandwidth switched network. An ISTORE-based server is
built out of physically interchangeable device bricks that
plug into an intelligent chassis. A device brick consists of
one single-function device, such as a disk, combined with
an embedded CPU and a network interface in a standard
physical and electromechanical form factor. These device
bricks fit into the bays of a chassis that provides uninter-
ruptable power, cooling, environmental monitoring, and a
scalable, high-bandwidth, redundant switched network.

A typical ISTORE system might be constructed out of
several different, but physically interchangeable, types of
device bricks. The exact configuration of bricks can be
chosen to match the demands of the target application, pro-
viding easy hardware adaptability. For example, a database
server would be built primarily from disk bricks, but might
also have memory bricks for caching. All servers tailored
for network service applications need one or more front-
end interface/router bricks to provide scalable external
connectivity to the system by translating between standard
networks and protocols (e.g., ODBC over TCP over Ether-
net) and internal application-specific protocols. One could
imagine many other classes of device bricks that might be
useful in constructing other types of servers: tape bricks for
backup, specialized media transcoding bricks for video
servers or PDA proxies, high-performance CPU bricks for
CPU-intensive applications such as scientific data process-
ing, and a variety of front-end bricks that could be com-
bined to provide multi-protocol access to the system.

Beyond the obvious packaging advantages, ISTORE’s
LEGO-like approach to constructing a system out of sin-
gle-function building blocks offers advantages in scalabil-
ity and availability. The system is inherently scalable, as
devices connect directly to a switched network that offers
scalable bandwidth, rather than to a fixed-capacity I/O bus.
Additionally, the system can be incrementally scaled with
heterogeneous hardware due to the modular, plug-and-play
packaging of devices.

The network-based device interconnect enhances avail-
ability as well as scalability by replacing single-point-of-
failure busses with redundant switched paths; device bricks
can have multiple independent connections to the network
to survive cable or network interface failure. Availability is
also enhanced by having on-device intelligence, as devices
can then autonomously check themselves, verifying correct
operation of their integrated hardware and software via
periodic scrubbing operations or “fire-drill” testing. Intelli-



gent devices can also detect fatal errors or unexpected con-
ditions that occur during normal operation and
automatically disconnect themselves from the system, pro-
viding fail-fast behavior.

3. ISTORE software architecture

ISTORE’s hardware platform provides a robust, scal-
able, and powerful foundation for data-intensive network
service applications. In this section, we propose a software
architecture for the ISTORE runtime system that comple-
ments the hardware by allowing these applications to
achieve self-monitoring, adaptation, and ultimately self-
maintenance. This architecture has two main goals: first,
the software system should provide a framework that
allows the system designer to easily specify custom moni-
toring requirements and define related adaptation code.
Second, and more importantly, the system should be capa-
ble of automatically generating monitoring code and adap-
tation algorithms for those adaptation goals that are
common to data-intensive network services. The remainder
of this section describes a proposed software architecture
that we believe fulfills these requirements.

3.1. A framework for monitoring and adaptation

Central to the process of providing introspection is the
collection, aggregation, and processing of monitoring data.
ISTORE simplifies this process by unifying all monitoring
data in the system into the abstraction of a single dynamic,
system-wide database, and by providing a set of powerful
data manipulation primitives on top of that database.

Each hardware device in an ISTORE system is a source
of monitoring data, be it static representations of the
device’s capabilities, dynamic statistics on the device’s
environment and general health, or dynamic data streams
containing access patterns and performance information.
As this monitoring data is gathered, it becomes part of the
system database; the schema of this database is a unifica-
tion of the schemas of each class of device in the system,
schemas that are in turn defined by the types of data col-
lected by the sensors and software on that device.

An adaptive application running on an ISTORE system
is clearly not interested in all the raw monitoring data being
emitted at high volume from every device in the system;
each application needs to select a subset of the available
data and integrate that data to produce application-specific
performance, health, or other monitoring metrics. To this
end, ISTORE supports the definition of database-style
views over the system monitoring database, expressed to
the system as queries in an extended SQL-like declarative
language. Views reduce the task of defining application-
specific monitoring to a simple process of writing a declar-

ative specification of which raw monitoring data is interest-
ing and how to combine it, a process that can be simplified
further via the use of graphical tools for query definition.

Providing runtime support for adaptive applications
requires more than just allowing them to specify views
over monitoring data, however; the system must also pro-
vide a way for those applications to express their notion of
“interesting” situations to the system, where an interesting
situation is defined by some state of the monitoring data
that requires reaction and adaptation (e.g., an overutilized
component or a device failure). ISTORE achieves this by
allowing applications to specify triggers, predicates over
their monitoring views that are satisfied when an interest-
ing situation occurs. Like views, triggers are specified to
the system in a declarative, SQL-like language. When a
trigger’s predicate is satisfied, the ISTORE runtime system
upcalls to an application-specified handler that is responsi-
ble for implementing the application’s adaptation policy
for the event that caused the trigger to fire.

Thus, by using the system monitoring database and its
associated views and triggers, an ISTORE application
inherits a significant amount of the needed mechanism for
providing introspection, allowing the application designer
to focus on the application-specific logic of monitoring,
rather than having to reinvent and debug the mechanisms
for these tasks from the ground up. Furthermore, an appli-
cation can easily redefine its monitoring views and adapta-
tion triggers while the system is running. As a result, it is
trivial for an ISTORE application to dynamically change
the set of statistics that it is monitoring and the conditions
to which it will react. This provides applications with an
additional level of adaptation that would not be possible
were the monitoring and adaptation mechanisms coded
statically for each application, as it allows applications to
adapt their monitoring and adaptation strategies themselves
as their workloads and environments change. For example,
a database application being used for a mixed workload of
online transaction processing and batch decision support
might monitor different I/O metrics (e.g., IOPS vs. deliv-
ered bandwidth) depending on the instantaneous properties
of the workload, but might share the same reaction code in
both cases.

3.2. Automatic generation of introspection

The framework described in the previous section
relieves some of the burden of the designer of an ISTORE-
based introspective service by allowing the designer to
focus on the application-specific logic for monitoring and
adaptation rather than on the mechanics of collecting and
processing monitoring data. However, the framework by
itself does little to simplify the mechanics of adaptation, as
the designer must still write the trigger-invoked reaction



code manually. In some cases, it may be possible to reuse
existing application code or hooks into the application to
perform the reaction tasks (for example, database applica-
tions already have recovery facilities that can be invoked
upon failures), but in most cases the designer’s task would
be greatly simplified if the system could take over and
automate the mechanics of adaptation as well.

To this end, the ISTORE runtime software architecture
provides a means of automatically generating monitoring
and adaptation code for those adaptation goals that are
common across data-intensive network service applica-
tions. These adaptation goals include the tasks required by
any self-maintaining system: detecting and recovering
from component failure, recognizing and quenching data
hot-spots and load imbalance, incorporating new hardware
resources to allow for scaling and upgrading, and so forth.
Of course, each application will have slightly different pol-
icies as to the importance of each of these goals and how
they are to be met. Thus, any attempt to automate adapta-
tion in these areas must be extensible, so that application
policy can influence the generated mechanisms.

In our proposed ISTORE software architecture, this
extensible automatic adaptation is accomplished via a com-
bination of built-in reaction algorithms and mechanism
libraries, which are integrated with application-specific
policy information and the runtime framework described in
the previous section by a policy compiler. The reaction
algorithms encapsulate generic mechanisms for adapting to
certain common situations, such as reacting to component
failure by rebuilding lost data redundancy; the mechanism
libraries provide a base set of mechanisms (such as object-
based file access, directory services, replication, transac-
tions, and so forth) that are used by the reaction algorithms.
The key piece of the system, however, is the policy com-
piler. The input to this compiler is a declarative specifica-
tion of the application’s adaptation requirements,
expressed as database-like integrity constraints over a view
of the system monitoring database. The compiler translates
this specification into the views and triggers needed to
detect violations of those constraints, as well as into adap-
tation code templates (based on built-in reaction algo-
rithms) that provide a generic mechanism for restoring the
system to a state in which the constraints are again met.
The reason for generating templates is that, while the sys-
tem will always generate correct code to restore the system
after a constraint violation, it may not always produce the
optimal code for a particular application. Thus, while the
generated code should be suitable for most applications,
the use of a template allows motivated application design-
ers to modify the code to incorporate more application-spe-
cific optimizations, such as using more relaxed locking
protocols when replicating weakly-consistent data to
quench a hot spot or load imbalance.

We believe that ISTORE’s ability to automatically gen-
erate monitoring and adaptation code is essential to expos-
ing the power of ISTORE’s introspective capabilities in a
way that makes effective, application-specific utilization of
those capabilities tractable. The use of domain-specific
declarative policy statements expressed as database con-
straints allows an application designer to specify precisely
the relevant application-specific adaptation policies, with-
out having to explicitly define monitoring procedures or
coordinate adaptation mechanisms. The use of adaptation
code templates preserves the possibility of further applica-
tion-specific extension and optimization, while not requir-
ing it in the common case.

Additionally, placing the burden of code generation pri-
marily on the policy compiler simplifies the application
designer’s task beyond just reducing the amount of code
that needs to be written: since the policy compiler (rather
than a human) is responsible for generating adaptation
code, it is much more likely that the resulting code is cor-
rect. The compiler uses as its raw materials a set of built-in
algorithms and mechanisms; once these have been verified
and debugged, all ISTORE application designers can
inherit that verification effort. Similarly, since the compiler
takes responsibility for generating the necessary house-
keeping code in the adaptation code templates, whole
classes of programming errors (including synchronization
and memory management bugs) can be avoided. Finally,
the compiler is a natural coordination point at which con-
flicting constraints or policies can be detected, and where
cross-policy optimizations can be performed.

3.3. A brief example

In order to make the ideas discussed in the previous two
sections more concrete, we now describe a sample system
policy, the automatically-generated view, trigger, and adap-
tation code template produced to enforce it, and how that
adaptation goal naturally helps to provide self-mainte-
nance. The particular adaptation goal we will examine is
maintaining a fixed level of data availability by ensuring
that there are always three replicas of all data objects in the
system.

Given a declarative statement of this goal, the policy
compiler first determines what status and performance
information is required to detect a violation of the redun-
dancy requirement. In this example, the requisite status
information is the “health” of the disks in the system, i.e.,
whether each disk is “dead” or “alive.” The compiler then
constructs a view by selecting the health field of the data-
base for each entry that corresponds to a disk. Note that we
are assuming the policy requires all three replicas to be
stored on disk; the designer might instead specify that one
of these replicas may be stored in volatile or nonvolatile



memory, in which case the health status of those compo-
nents would also become part of the view.

The next step is to define a trigger that detects when the
“health” field of a record in the view changes to “dead” and
that then invokes the appropriate adaptation code. To do
this, the policy compiler specifies both the condition that
will cause the trigger to fire and the relevant information
from the database (defined as yet another view) that the
adaptation code might use in reacting to the trigger. When
the trigger fires, this second view is passed as an argument
to the reaction code. In our example, the argument view
might consist of the identities of the data objects that were
stored on the dead disk and the static and dynamic utiliza-
tion of all the disks in the system (i.e., how full they are and
how much demand has been placed on their seek capacity
and transfer bandwidth over one or more preceding time
periods).

Finally the policy compiler generates an adaptation
code template. In our three-replica example, this template
would implement a generic replication mechanism that, for
each data object that was stored on the disk that died, finds
one of the two remaining replicas of that object, locks the
replica, performs a byte copy of the object to the least uti-
lized disk in the system, unlocks the object, and updates
the system’s index of data object locations. This adaptation
code can then be customized by the system designer to
exploit application semantic information, if desired. For
example, the system designer might want to store the new
(third) replica of an object only on a disk not already hold-
ing a replica of that object, might want to employ an appli-
cation-specific compression algorithm to compress all third
replicas if disk space is becoming scarce, or might want to
use an application-specific relaxed locking policy during
the copy operation.

Thus the ISTORE software allows a designer to create
what is essentially an application-specific introspective
runtime system just by specifying the key runtime invari-
ants for their application. Moreover, ISTORE’s flexible
declarative policy specification framework allows the easy
construction of systems that are fully self-maintaining, i.e.,
that not only performance-tune themselves in response to
workload variations but also perform maintenance tasks
like healing the system after a component failure. Our
example illustrates this: when a disk dies this fact will be
reflected as an update to the monitoring database which
will fire the trigger that will in turn invoke the replication
reaction code described above.

3.4. Hardware support for software introspection

ISTORE’s ability to effectively support self-maintaining
applications relies on the interplay of its intelligent hard-
ware and introspective software framework. This integra-

tion of hardware and software is most evident in the
implementation of the monitoring database. The adaptive
software framework we have described assumes the infor-
mation stored in the monitoring database is somehow con-
tinually updated. The source of these updates may take any
number of forms, including simple hardware monitors
(e.g., temperature sensors or performance counters) or tra-
ditional software instrumentation for statistics gathering.
But by using intelligent hardware, ISTORE can implement
not only statistics gathering but also monitoring for arbi-
trary conditions directly on the hardware that is being mon-
itored. As a result, the repository of monitoring data can be
a virtual database, rather than a materialized one, with the
hardware implementing views and triggers directly by fil-
tering and reacting to data as it is gathered. Some triggers
can be implemented on each brick in a purely local fashion,
e.g., “detect when utilization exceeds 90%.” Others take
the form of a distributed computation that synthesizes local
monitoring data, e.g., “detect when less than 10% of total
system disk space is free.” Finally, some triggers can be
implemented on a single brick but require gathering indi-
rect information about remote bricks, e.g., “detect when
another brick stops responding to network messages.”

Another key advantage of ISTORE’s union of intelli-
gent hardware and introspective software becomes evident
when systems of heterogeneous devices are considered. As
ISTORE’s monitoring database incorporates not only
dynamic runtime status but also static information about
the functional and performance capabilities of each hard-
ware device, introspective application software can lever-
age ISTORE’s self-characterizing hardware by extracting
this static information from the database when making
adaptation decisions. For example, the system might
include disks with different seek latencies, and a system
policy constraint might specify that randomly-accessed
data should be kept on the disks with the smallest seek
latencies while large sequentially-accessed objects may be
stored on the disks with the longest seek latencies. Thus the
ability of adaptation code to query ISTORE’s database to
help make appropriate adaptation decisions complements
ISTORE’s plug-and-play hardware framework by allowing
the system’s adaptation mechanisms to automatically and
intelligently utilize new and heterogeneous hardware com-
ponents.

4. Related work

ISTORE’s adaptive nature and self-tuning properties
reflect a general trend in the software community.
Researchers have proposed feedback-driven adaptation for
extensible operating systems [16], databases [4][5], global
operating systems [6], and storage devices [3][20]. The
ISTORE architecture differs from these projects in two



ways. First, ISTORE is a combined hardware/software
architecture that systematically integrates continuous,
detailed monitoring at all levels of the system. Second, an
ISTORE-based server’s adaptability is completely con-
trolled by the application’s dynamic definition of views and
triggers, not imposed statically by a system designer.

ISTORE’s use of a database with views and triggers to
manipulate monitoring data borrows heavily from the
design of relational databases [2][18]. The idea of storing
system statistics and monitoring data in a relational data-
base similarly mirrors recent work in no-knobs database
design [13], although ISTORE extends this work by incor-
porating dynamic access streams into the database and by
using intelligent hardware to create a non-materialized dis-
tributed database.

ISTORE’s device bricks are a generalization of recent
work in intelligent disks [1][12][15] and intelligent net-
work interfaces [7]; ISTORE goes beyond those projects
by integrating multiple intelligent devices into a single
hardware and software system designed to meet applica-
tion-specific needs, and by using intelligence to enable
adaptation, not just to execute application code.

Finally, a specialized ISTORE server is similar to a
class of single-function network “appliances” that has
recently emerged as a way to cost-effectively provide net-
work services [11][17]. ISTORE goes beyond these appli-
ances by addressing the higher-level goal of providing a
generic framework for building such appliances, rather
than focusing only on the optimizations needed for a par-
ticular application.

5. Conclusions

The growing importance of data-intensive network ser-
vices demands new server architectures. We believe that
specialized, optimized single-purpose servers that merge
intelligent hardware and introspective software provide the
automatic self-administration, high availability, scalability,
and performance needed by these services. Our approach
stands in contrast to existing server architectures that,
because they are built from general-purpose hardware and
system software, are constrained by generic interfaces and
abstraction barriers that make it difficult to implement
effective self-monitoring and adaptation.

By combining intelligent components with an extensi-
ble, reactive runtime system, the ISTORE architecture pro-
vides a powerful, flexible framework for building the
introspective servers needed to support tomorrow’s net-
work services. ISTORE’s modular intelligent hardware is
adaptable, easily scaled, and reliable, while its runtime sys-
tem simplifies and automates the creation of the applica-
tion-specific monitoring and adaptation mechanisms that
are essential to introspective, self-maintaining systems.

6. Acknowledgments

This work was supported by DARPA under grant
DABT63-96-C-0056. The authors wish to thank Jim Beck,
Joe Hellerstein, and Margo Seltzer for their insightful com-
ments on earlier drafts of this paper.

7. References
[1] A. Acharya, M. Uysal, and J. Saltz, “Active disks: program-

ming model, algorithms and evaluation,” in Proc. 8th Int.
Conf. on Architectural Support for Programming Languages
and Operating Systems, Oct. 1998, pp. 81–91.

[2] M. Astrahan, et al., “System R: Relational Approach to
Database Management,” in ACM Transactions on Database
Systems, 1(2): 97–137.

[3] E. Borowsky, R. Golding, et al., “Eliminating Storage Head-
aches through Self-management,” in 1996 OSDI Sympo-
sium, Seattle, WA, Oct. 1996.

[4] S. Chaudhuri and V. Narasayya, “AutoAdmin ‘What-If’
Index Analysis Utility,” in Proceedings of ACM SIGMOD,
Seattle, 1998.

[5] S. Chaudhuri and V. Narasayya, “An Efficient Cost-Driven
Index Selection Tool for Microsoft SQL Server,” in Proc.
23rd Intl. Conf. on Very Large Databases (VLDB97), Ath-
ens, Greece, 1997, pp. 146-155, 1997.

[6] R. Draves, W. Bolosky et al., “Operating system directions
for the next millennium,” in Proc. Sixth Workshop on Hot
Topics in Operating Systems (HotOS-VI), May, 1997.

[7] M. E. Fiuczynski, R. P. Martin, T. Owa, and B. N. Bershad,
“SPINE: A Safe Programmable and Integrated Network
Environment,” in Proc. of the Eight ACM SIGOPS Euro-
pean Workshop, September 1998.

[8] Forrester. http://www.forrester.com/research/cs/1995-ao/
jan95csp.html.

[9] Gartner. http://www.gartner.com/hcigdist.htm.
[10] J. Gray, “Locally served network computers,” Microsoft

Research white paper, February 1995, available from
http://research.microsoft.com/~gray.

[11] D. Hitz, “An NFS File Server Appliance,” Network Appli-
ance, Inc., Technical Report 3001, 1995.

[12] K. Keeton, D. A. Patterson and J. M. Hellerstein, “The case
for intelligent disks (IDISKs),” SIGMOD Record, Vol. 27,
No. 3, September 1998, pp. 42–52.

[13] S. Lakshmi, “No-Knobs Database Operation - An Informix
CTO Initiative,” guest talk given as part of U.C. Berkeley
CS294-2 class, 20 November 1998.

[14] G. Papadopoulos, “Moore’s Law Ain’t Good Enough,” Key-
note address at Hot Chips X, August 1998.

[15] E. Riedel, G. Gibson, and C. Faloutsos, “Active Storage For
Large-Scale Data Mining and Multimedia,” Proceedings of
the 24th International Conference on Very Large Databases
(VLDB '98), August 1998.

[16] M. Seltzer and C. Small, “Self-Monitoring and Self-Adapt-
ing Systems,” in Proc. of the 1997 Workshop on Hot Topics
on Operating Systems, Chatham, MA, May 1997.

[17] SNAP!Server. http://www.snapserver.com.
[18] M. Stonebraker, et al., “The Design and Implementation of

INGRES,” ACM Transactions on Database Systems, 1(3):
189–222.

[19] J. Wilkes, Personal communication, October 1998.
[20] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “The HP

AutoRAID Hierarchical Storage System,” ACM TOCS
14(1):108–136, February 1996.


