An IRAM-Based Architecture for a Single-Chip ATM Switch

I. Papaefstathiou! A. Brown? J. Simer? D. Sobel? J. Sutaria* S.Y. Wang?
T. Blackwell; M. Smith} W. Yang*

Abstract

We have developed an architecture for an IRAM-
based ATM switch that is implemented with merged
DRAM and logic for a cost of about $100. The switch
is based on a shared buffer memory organization and
is fully non-blocking. It can support a total aggre-
gate throughput of 9.6 Gbits per second, organized in
any combination of up to 32 155 Mb/sec, eight 622
Mb/sec, or four 1.2 Gb/sec full-duplex links. The
switch can be fabricated on a single chip, and includes
an internal 4 MB memory buffer capable of storing
over 85,000 cells. When combined with external sup-
port circuitry, the switch is competitive with com-
mercial offerings in its feature set, and significantly
less expensive than existing solutions. The switch is
targeted to WAN infrastructure applications such as
wide-area Internet access, data backbones, and digital
telephony, where we feel untapped markets exist, but
it is also usable for ATM-based LANs and even could
be modified to penetrate the potentially lucrative Fast
and Gigabit Ethernet markets.

1 Introduction

Asynchronous Transfer Mode (ATM) is a circuit-
based switching technology that meets the ever-
increasing market demands for network bandwidth.
ATM networking technology provides support for
Broadband Integrated Services Digital Networks (B-
ISDN), the high-speed transfer of voice, video and
data over a single network. In addition, ATM technol-
ogy is an excellent choice for network backbones that
carry sizeable amounts of traffic. In the near future,
we may expect to see ATM switching technologies de-
ployed to provide local and wide-area internetworking.
While the cost of currently-available ATM networking
solutions has hindered its adoption and deployment
on a large scale, we believe that a low-cost solution
and a number of recent market developments promise
to create a sizeable demand for ATM switching tech-
nology.

2Cambridge University, Supported by a Marie Curie Re-
search Training Grant under TMR activity 3
1Harvard University

ATM switches in recent years have been moving
out of research testbeds and into commercial use. The
recent, adoption of several ATM signalling standards
by the ATM Forum increases the potential for inter-
operability of different brands of ATM switches with
different capabilities and opens up the ATM switch
market to competition. We believe that the large-
scale deployment of fiber-based Wide Area Networks
(WANS) by telcos and cable companies will lower both
the cost of fiber-interface circuitry and the cost of fiber
deployment. As the costs associated with installation
of fiber networks decrease, we believe that technologies
such as ATM and Gigabit Ethernet will become more
viable Local Area Network (LAN) technologies. Addi-
tionally, as cable companies and telcos begin to deploy
advanced, wide-area, high-bandwidth digital services
over these new fiber networks, they will require ad-
vanced switching technology that is both small and
inexpensive; we feel that an ATM network using our
switch will provide that technology.

2 Architectural Overview

The switch we have designed is in most respects
a 32x32 port fully-interconnected output-buffered
switch capable of operating at OC-3 (155 Mb/sec).
The switch has 35.5 Mbits of buffer space for cells (85
kCells of space), its buffer is organized in a pipelined
fashion as proposed in [?] and used in [?], and cells
queued for a single OC-3 output port can occupy as
much as one half of the buffer at any given time. Thus,
while the buffer is not fully shared, it mimics the be-
havior of a shared buffer in most traffic conditions.
Modifications to our core 32x32 architecture have been
made to allow ports to be "bundled” and function to-
gether as a single port servicing a higher data rate.
For instance, our switch can be configured seamlessly
to function like a fully-interconnected 8x8 OC-12 (622
Mb/sec), or 4x4 OC-24 (1.2Gb/sec) switch. Any bun-
dled port can have access to the entire memory space,
and thus for any non-OC3 port, the cell memory is
effectively fully shared. A detailed description of the
bundling scheme can be found in [?]. A block diagram
of our switching chip can be found in Figure 1.

Fiber Fiber Fiber Fiber
Routing and § é § §
Switch
Control Cnput Port@ Cnput PonD Cnput Porta G‘Ipm Port ?9
PO SER S €

(e.g., 1960)

[serid->Parallel] [Serid->Paralld] [Serial->Pardllel] [Serid->Paralle]

) ¥ N 4 N4 N4 N4

v \4 \4 \4
Input Distribution Circuitry (for bundling)

accum/mux a:cum/mux
| 6

Internal
Control

Unit 8 [—Iﬁ
accum/mux accum/mux
[6 [6

Output Port/ 4—]
VC Lookup
Output Port/ |«
VC Lookup
Output Port/ |«
VC Lookup

Output Port/ |4

VC Lookup

Output Order Preservation
(for bundling)

A A 4 v v

OH H H H H H HrF WamoSans

Main DRAM Bank For Cell Body
Divided into 64 banks, each 6 bitswide. Each
cell split across 64 banks. Pipelined so that
al input and output ports can access it
simultaneously. Write addresses from control
unit, read addresses from output queues.

Address Control

6 6] 6 6

— 3 |

[Data Condenser/Unloader (for bundling)]
6 E E [

[accumulator | [accumulator | [accumulator | [accumulator |
p & A4 A4 A4
v v v v
[Paralle->Serial| [ParaJIeL>Senal] [Parallel->Serial| [Paranei->5ena]

'J_@ulpullponCD 'J\@uipu‘lPorI]) Mu\pul‘ﬁ)n@ 'J\@utput'PorHl)

Figure 2: Block diagram of single-chip ATM switch. The diagram shows a switch with 32 full-duplex ports.

2.1 Getting Cells Onto and Off the Chip

Serial data arriving on fiber-optic transmission lines
is converted from light signals to electrical signals by
readily-available off-chip hardware. External logic is
used to convert the serial data stream into a wider
parallel stream and to perform necessary SONET-
protocol framing procedures on the incoming cells.
Such hardware is readily available for OC-3 and OC-12
data rates. While there is a paucity of OC-24 support
circuitry available, we envision that this technology
will become readily available as ATM technology ma-
tures. At that time, our ATM switch will be still be
capable of handling these faster data rates.

We must briefly mention the functionality of the
existing support hardware. Each bi-directional port
must be supplied with two distinct pieces of hardware.
One is a optical/electrical conversion chip, which han-
dles all the light generation and detection as well as
clock recovery. This chip, which is independent of cell
framing, hands off the electrical data to a SONET-
based cell detection processor (such as the one made
by PMC-Sierra), which processes and frames each cell
and performs some error detection. Of note is the fact

that these chips will pad out the header to 6 bytes,
with the sixth byte containing error detection informa-
tion, and thus bring the total cell length to 54 bytes.
For reasons that will become clear later, this extra
byte padding makes the control of our switch far sim-
pler. Also, these support chips are bi-directional, so
data flow in the opposite direction occurs at the out-
put ports.

Our ATM switch can be set up in several different
configurations, and each configuration has a different
number of ”virtual ports” operating at a different data
rate. Thus, the pin width for each ”virtual port” is
naturally dependent on the type of port being ser-
viced. For an OC-24 data port (typically used in a
4x4 fashion), the pin width is 32 pins per port (or 64
pins per bi-directional port). If our chip is to be used
as a 8x8 OC-12 switch, then the pin width is halved to
16 pins per port. Likewise an OC-3 port will require
4 pins.

In all of these configurations the pins will be clocked
at an external speed of roughly 40 MHz, a speed easily
realizable on a PC board.

It is important to note that there is nothing pre-
venting our switch from being setup in some ”hybrid”
configuration. For instance, if our switch were to be
used at the terminal point of some larger network,
where it was to serve as a connection between sev-
eral workstations and the network backbone, our chip
could be setup to handle 6 OC-12 bi-directional ports
to connect to 6 workstations and a single OC-24 bi-
directional port to connect to the high-speed back-
bone.

Once inside the switch, the data stream is parsed
via the accumulators (one per port) into 6 bit wide
words and routed to the one of the 32 internal ports
as appropriate. The 6- bit word size was chosen since
the 48-byte body of an ATM cell can be broken up
into 64 6-bit words, and we will be using 64 stages
in the pipelined memory buffer. Note that a 53-byte
ATM packet is one byte short of 72 full 6-bit words.
However, since the serial-to-parallel SONET framing
circuitry pads the header from five to six bytes, the
cell divides nicely into 72 6-bit words. (The header
comprises 8 words, and the payload comprises 64.)
This division simplifies the header analysis within the
chip. Cells leave the switch in the same manner: the
6-bit internal words are broken up or accumulated into
their appropriate pin width, and are then transmitted
off-chip via the dedicated data busses. Once off-chip,
these words are converted to a serial signal, and then
to light pulses on the fiber lines.

We chose to place the optical-to-electrical conver-

sion circuitry off-chip so that it was not necessary to
worry about performing the light generation and de-
tection on-chip. Also, the serial-to-parallel framing
circuitry must run with an extremely fast clock, so
pushing it off-chip simplifies our design significantly,
and does not significantly affect the complexity of an
entire switch built with our chip at its core. Also,
these chips are readily available on the market.

2.2 Cell Headers: Routing Lookup, Han-
dling, and Storage

Let’s now examine how the headers are stored and
updated. An ATM cell header is 5 bytes (40 bits) long,
and contains exactly one 24-bit field (bits 4-27) which
must be updated by the switch (the others can be left
untouched). This is the virtual circuit/path identi-
fier (VCI/VPI). The switch must maintain state that
maps an input pair (input_port, input-VCI/VPI) to
an output pair (output_port, output_VCI/VPI). The
input_port is known (since the switch knows on which
bus the cell arrived), and the input-VCI/VPI can be
determined from the cell header. The fields of the
(output_port, output-VCI/VPI) pair must be com-
puted for each arriving cell, as the output_port field
determines the output port for which the cell is des-
tined, and the output_VCI/VPI must be written into
the cell’s header before it is sent out.

The translations between (input_port,
input_VCI/VPI) and (output_port, output_VCI/VPI)
are initialized externally by the routing control unit.
The switch maintains 32 lookup tables, one per input
port, in its internal DRAM; these tables are used to
map the input_-VCI/VPI to an output port and out-
put VCI/VPI (since each port has its own table, the
input port need not be specified in the mapping).

We would like to be able to support many virtual
circuits through the switch, ideally as many as 256K
(or 8K circuits per OC-3 port). However, there are
224, or 16M, possible VCI/VPI identifiers. Keeping a
table of 224 entries per port is prohibitive in terms of
memory used. Even using a 8K-entry open-hash ta-
ble is not ideal, as the worst-case probe time for such
a table is O(8K), which would severely impact the la-
tency and synchronization of the switch. Luckily, since
the problem only affects the input VCI/VPI (since
we can easily store entire 24-bit output VCI/VPIs),
we can merely specify a certain 14-bit subset of the
VCI/VPI field which will be used by our switch (and
only use those VCI/VPIs when establishing VCs or
VPs). Then we need only address a 8K-entry linear
table of (output_port, output_VCI/VPI) entries with
these 14 bits in order to determine the destination
and output header for each incoming packet. For a

32- port switch, each entry in this table takes 29 bits
(24 for output VCI/VPI and 5 bits to select from 32
output ports), so each port’s table takes up 232 kbits,
and the space overhead of the 32 routing tables is 7.2
Mbits.

Because we only store cell bodies in the main mem-
ory bank, and because the cell header arrives in the
switch in its own set of eight 6-bit words, we can per-
form the tasks of writing the cell body to memory
in parallel performing the header lookup and storage.
Furthermore, the cell headers will be stored in a 8-
stage pipelined memory in order to maximize data
throughput.

Each output port has associated with it a FIFO
queue. Each entry in the queue is a 17-bit word con-
taining the address of the cell in the main memory
bank and the header in the header memory (they share
the same 17-bit address). These queues are filled as
follows. When a cell header arrives at an input port,
the cell is assigned an address from the free address
FIFO. The header is then sent to the look-up table
for its input port, where it is latched into a register.
The address assigned to the cell is also latched by a
register associated with the look-up table, and is also
sent to the pipelined memory. The table lookup and
translation has been completed by the time the cell
payload arrives at the switch, and thus the payload
and header are written to their respective pipelined
memories during the same clock cycles. Meanwhile,
the address of the header and payload in memory is
forwarded to the appropriate output port and stored
in that port’s output address queue.

Once an output port sees that its queue is
nonempty, it uses the stored address to access the
pipelined memory banks and to stream the cell header
and body that it retrieves out to the external data bus
to be sent on the fiber. It continues doing this until the
queue is empty again, at which point it waits for more
packets. Thus it is the output port that drives its own
transmission, and which retrieves the data from mem-
ory, so there should be no unnecessary output blocking
in our switch design. There is some centralized con-
trol that synchronizes and orders the ports’ accesses
to memory so that contention is not an issue.

2.3 Memory System: Size and Refresh

It was decided that an ATM switch was well suited
to IRAM-implementation because of the ”memory-
heavy” nature of an ATM switch. It should be fairly
clear to the reader that ATM switches seem to be lit-
tle more than a stand-alone memory subsystem with
small amounts of extra ATM-specific processing logic.
Previous implementations of ATM switches have re-

Part of Memory Memory
Switch Contents usage
Payload buffer 85k cells 32Mbits
48 bytes each
Header buffer 85k cells 3.3Mbits
8 bytes each
Lookup Tables 256k entries 7.2 Mbits
29 bits each
Output Address 32 FIFOs 22 Mbits
FIFOs 43K * 17 bits each
Free Address 85k entries 1.4 Mbits
FIFO 17 bits each
Total Memory
Usage 65.9Mbits

Table 1: Memory usage of the switch. Notice that
the payload and header buffers together account for
55% of the memory, while the look-up tables use an
additional 12%. The remaining 33% of memory is in
the output address and free address FIFOs; this 33%
is overhead beyond the basic cell storage requirements.

lied primarily on SRAM cells as the basis of its core
memory, but our switch will be built using DRAM-
based memory. The motivation for using a DRAM-
based architecture is clear: DRAMs are smaller and
cheaper than SRAMs, so a switch using DRAM can
have significantly more memory in a similarly-sized
package. With more memory, an ATM switch can
perform remarkably better under heavy traffic loads.

One of the most difficult problems, however, in
building a DRAM-based ATM switch—and probably a
significant reason why one has never been built before—
is in handling the memory refresh that DRAM re-
quires. ATM switches require constant access to mem-
ory, and building a switching network around the pre-
determined refresh schemes of commodity DRAM is
likely to require numerous stalls as the memory re-
freshes itself. This is one of the reasons IRAM integra-
tion is so appealing. We can have the chip internally
schedule the necessary refresh cycle so as to completely
eliminate conflict between memory requests and inter-
nal refresh.

Our switch would have an internal refresh sched-
uler controlling the refresh cycles for each major piece
of DRAM memory: header and payload buffer mem-
ory, VPI/VCI look-up tables, free address FIFO, and
output address FIFO. The refresh scheduler would be
a simple counter cycling through the address space of
each of these components and perform a read oper-
ation in order to refresh the individual DRAM cells.
Our refresh schedulers will perform refresh cycles dur-

ing the naturally occurring idle time of the various
memory components. Thus, refresh can be handled
invisibly without any performance degradation what-
soever.

3 Conclusions

We can implement a 9.6Gbits/s ATM switching
fabric at low cost through the use of Intelligent
DRAM technology and an integrated, pipelined ar-
chitecture. We believe such a product can be uti-
lized in ATM switches that offer substantially better
cost/performance ratios than those currently available
from ATM vendors. In addition, the widespread de-
ployment of high-speed WANSs by telecommunications
companies will increase demand for low-cost, high-
bandwidth networking solutions. We believe that our
switching core is ideally suited to such applications
because of its large feature set, its flexibility, and its
small size. Not only is our design well-suited to WAN
networking solutions, it is also appropriate for high-
speed LANs. While the costs associated with adop-
tion of high-speed ATM networking have been pro-
hibitively high, we believe that large-scale deployment
of such networks will provide an economy of scale.
LAN switches based upon our integrated switching
fabric will be well-positioned to capture sizeable mar-
ket share. Furthermore, through the use of appropri-
ate "filter” circuitry, we believe that our switching fab-
ric can be used to support network technologies other
than ATM-Fast Ethernet or Gigabit Ethernet for ex-
ample. In conclusion, we believe that this design for an
IRAM-based network switching fabric provides a high-
performance, low-cost product that is well-positioned
to provide significant profitability in the high band-
width networking market.

References

[1] M. Katevenis, P. Vatsolaki, A. Efthymiou,
Pipelined Memory Shared Buffer for VLSI
Switches, Proceedings of SIGCOMM, June 1995.

[2] Katevenis M., Serpanos, D., and Vatsolaki, P.,
ATLAS I: A General-Purpose, Single-Chip ATM
Switch with Credit-Based Flow Control, Proceed-
ings of the Hot Interconnects IV Symposium,
January 1996.

[3] Brown A., I. Papaefstathiou, J. Simer, D. Sobel,
J. Sutaria, S. Wang, T. Blackwell, M. Smith, W.
Yang. An IRAM-Based Architecture for a Single-
Chip ATM Switch, Technical Report TR-07-97,
Center for Research in Computing Technology,
Harvard University, 1997.

