
Using MML to Simulate Multiple Dual-Ported SRAMs:
Parallel Routing Lookups in an ATM Switch Controller

Aaron Brown, Dan Chian, Nishat Mehta, Yannis Papaefstathiou, Josh Simer,
Trevor Blackwell, Michael D. Smith*, Woodward Yang*

Harvard University
{abrown, chian, nmehta, yanni, jmsimer, tlb, smith, woody}@eecs.harvard.edu

Abstract

The need for fast parallel table lookups is evident in
many modern hardware applications, such as network
switches, hard disk controllers, and encryption devices.
Typically, most of these table lookups are performed in
fast and expensive on-board SRAMs in order to reduce
latency. These SRAMs frequently provide dual-ported
access at speeds of up to 20 ns. However, for applica-
tions demanding many large look-up tables, SRAM’s
physical size, density, power requirements, and cost are
prohibitive. In this paper, we address this problem
through one particularly demanding example: the rout-
ing control in a sophisticated ATM switch. We present a
design that uses merged memory and logic (MML, a
modified form of DRAM) to simulate dual-ported
SRAM in performing tens of table lookups in parallel.
Our solution fits on one chip instead of over 300
required by an existing design, providing an integrated,
low-power solution while still meeting the rigorous tim-
ing constraints of the application.

1 Introduction
ATM networking is at the cutting edge of high-speed
network technology, both in the bandwidth that it pro-
vides and in the flexibility that it offers in configuring
and controlling connections (e.g., its ability to provide
quality of service guarantees or bandwidth reservation).
However, these features come at a price: in order to
obtain control and flexibility without sacrificing band-
width, ATM relies on expensive custom hardware for
the high-speed switches that form the foundation of the
network. The most advanced of these switches process
tens of gigabits of data per second in the form of over
20 million 53-byte cells per second. In such switches,
up to 200 table lookups are performed simultaneously
by the routing control which is typically implemented
with many discrete SRAMs.

The increasing demand for ATM switches necessi-
tates measures to integrate routing control and state stor-

age. We show that merged memory and logic (MML)
offers the best technically- and economically-feasible
solution to the circuit complexity, space overhead, and
parts cost involved in building control for an advanced,
high-speed ATM switch. Traditional solutions to inte-
gration, such as ASICs, fail in this case due to the ex-
traordinarily high internal bandwidth of and the large
amount of memory (as much as 20 Mb) needed for the
control. In contrast, MML offers both the large internal
storage capacity of a chip based around DRAM and the
high internal bandwidth attained through the integration
of routing control and state tables.

However, MML introduces a host of new difficul-
ties that must be overcome if it is to be used as the inte-
gration technology for an ATM switch’s routing
controller. The first and most significant of these is
speed. Our discussion is focused on a comparison to the
CreditSwitch [1], an experimental switch in our lab. The
SRAMs that MML would replace in an integrated ver-
sion of the CreditSwitch run with a 20 ns cycle time, and
many are dual-ported; achieving such a low cycle time
is very difficult in a DRAM technology, and dual-port-
ing at that speed is essentially impossible. Another sig-
nificant problem introduced by the DRAM basis of
MML is that of refresh: unlike the CreditSwitch’s
SRAM tables, an MML-based switch’s tables require
periodic refreshing to preserve the data stored within
them.

These difficulties are probably not entirely solvable
in general. However, in our specific application, we can
take advantage of certain special characteristics of ATM
switching in order to neatly bypass MML’s peculiari-
ties. The stringent timing and porting requirements of
the CreditSwitch’s SRAMs are entirely a by-product of
the fact that most accesses to the tables are of the form
Read-Modify-Write (RMW), which typically require at
least three cycles each with a traditional SRAM design.
Additionally, the timing patterns of the switch guarantee
that consecutive memory accesses are to different ad-
dresses. Finally, the regular patterns of an ATM
switch’s operation make it possible to schedule DRAM
refresh slots without interfering with normal switching
operations.

In this paper, we present a way of enhancing a stan-
dard DRAM block to simulate dual-porting and to han-
dle pipelined RMW requests; because adjacent
pipelined requests can never be for the same address in

*Michael D. Smith is supported in part by a National Science Founda-
tion Young Investigator award (grant number CCR-9457779), a DAR-
PA grant (number NDA904-97-C-0225), and by donations from AMD,
Digital Equipment, Hewlett-Packard, IBM, Intel, and Microsoft.
Woodward Yang is supported in part by an NSF Young Investigator
Award (MIP-92-57964), by an HPCC grant from NSF/ARPA (GC-R-
334138), a MURI grant from ONR (CT-S-608521), and by the Joint
Services Electronics Program (N00014-89-J-1023).

our ATM application, the modified block can effective-
ly service one RMW request per cycle. With an MML
solution built from these enhanced DRAM blocks, all of
the table-access requirements of an ATM switch con-
troller can be met with a cycle time of only 33 ns, which
is achievable in today’s DRAM technology.

MML seems to provide the ideal solution for inte-
grating the complex control of an advanced ATM
switch, and by extension for similar problems involving
parallel table lookups where RMW access patterns can
be exploited. In the remainder of this paper, we demon-
strate our enhancements to the standard DRAM block to
allow pipelined read-modify-write accesses, and present
a detailed analysis of how MML built with such blocks
is ideal for the ATM switching application. In Section 2,
we discuss related work in the field. Section 3 outlines
our design of an ATM switch, and we conclude in Sec-
tion 4.

2 Related Work
A look at current memory technologies helps justify
our choice of MML. Current DRAM technology is
often overlooked as an implementation alternative in
applications requiring multiple fast, simultaneous table
lookups because of standard 1T DRAM’s high latency
(30-60 ns) and single-ported design. 3T DRAM is dual-
ported but several times larger than the typical 1T
DRAM cell, and thus may not be as effective for single-
chip integration. SRAM, although much faster (<20
ns), consumes more power and can be 10 times larger
than highly optimized DRAM. As a result, applications
that rely on parallel table lookups using SRAM cannot
be implemented on a single chip. In contrast, MML
technology allows us to use significantly denser DRAM
arrays to drastically increase the amount of memory
available and to provide a cheaper integrated solution,
while maintaining the perceived latency of an SRAM.

Other technologies exist that have modified the ba-
sic DRAM block design to get application-specific per-
formance improvements. For example, Rambus uses
modified, highly-pipelined DRAM banks and special
high-speed bus signaling to obtain sustained bandwidth
of about 850MB/s, targeted for video and multimedia
applications [5] [6]. In another vein, IRAM technology,
where one or more relatively standard CPU cores are in-
tegrated with a large DRAM in a DRAM process, has
been proposed as a means of more tightly coupling
memory and logic in order to reduce memory-access la-
tency [4]. Our ATM application would not benefit from
any of these other technologies, however, as neither
RAMBUS’s high bandwidth nor IRAM’s tightly-cou-
pled processing horsepower address the timing and ac-
cess constraints of simultaneous table lookups. A table-
lookup-specific enhancement to the DRAM block via
MML technology remains the best implementation al-
ternative for our ATM application.

3 Example: An ATM Switch
Much research has gone into ATM as an improved,
high-speed replacement for the lowest layers of tradi-
tional networking models. ATM owes its performance
advantages to two protocol features that are not found
in more popular protocols such as Ethernet. First, ATM
uses a fixed-size packet, called a cell, as its unit of
transfer; each 53-byte cell consists of a 5-byte header
and 48 bytes of data payload. The small, fixed-length
cells used by ATM allow switch designers to take
advantage of hardware-level routing to switch data at
aggregate speeds of almost 100 times that of Fast Ether-
net. Additionally, unlike connectionless protocols such
as Ethernet, ATM creates a virtual circuit (VC) between
each pair of communicating nodes, so that every cell
sent between them follows the same path. A VC is set
up before any data is transferred, and a 24-bit VC iden-
tifier is assigned to each hop between the source and
destination. Because the VC identifier is explicitly
stored in each cell header, the routing decision inside a
simple ATM switch requires only a simple table-lookup
(indexed by the incoming cell’s VC) to determine the
next hop for the cell.

Thus, for each incoming VC, a basic ATM switch
maintains a routing table entry that contains an outgoing
VC and an output port. To route a cell, a switch extracts
the VC identifier from the cell header, looks up the VC
in its routing table, then rewrites the cell header, replac-
ing the old VC identifier with the outgoing VC identifi-
er, and queues the cell at the correct output port. In more
sophisticated switches (such as those implementing VC-
based flow-control semantics), several additional state
tables must be indexed and updated for each cell that
passes through the switch.

3.1 Memory Access Demands of ATM
Routing Control: A Reference Design
The memory access demands imposed by the extra
table-lookups in such sophisticated ATM switches
require implementations that are capable of delivering
high-bandwidth, parallel access to many large state
tables. Before we can see how to produce such an
implementation with MML, however, we must first
specify the memory-access patterns and constraints
more precisely. To do this, we turn to our reference
design for a flow-controlled ATM switch: the Harvard
CreditSwitch [1]. This is a 10 Gb/s ATM switch capa-
ble of switching data on 16 bidirectional 622 Mb/s links
(OC-12); it additionally provides a sophisticated credit-
based flow control scheme, described in full detail in
Blackwell et al. [2]. The routing control for this switch
is divided into 16 separate units, one for each of the 16
output ports, plus a master routing table used to direct
incoming cells to the appropriate output ports, where
they are processed and queued. In each cell cycle (the
time between receiving consecutive cells, or 694.44 ns
for OC-12 links), the routing control in each output port

must be able to receive/enqueue as many as 16 cells
from the input ports, and dequeue/transmit one cell to
the outgoing link.

In each output port’s routing control, the operations
involved in receiving and transmitting cells require ma-
nipulating various state tables, as well as several linked
lists. It is the linked lists that impose the greatest mem-
ory access demands. For each cell that is enqueued, the
routing control must place the cell on one of 8192 linked
lists of queued cells (one list for each of the 8192 sup-
ported VCs). In addition, if that linked list was previous-
ly empty, the list itself must be added to another linked
list that tracks active VCs (those with enqueued cells).
Similarly, when a cell is dequeued, it must be removed
from its per-VC list of queued cells, and that list may
have to be removed from the active VC list. The control
is complicated further by the fact that there are several
(32) lists of active VCs to allow for different priority
classes of VCs.

Each of the linked lists maintained by the routing
control is either singly- or doubly-linked, and head and
tail pointers are maintained for each (to allow FIFO se-
mantics). The hardware implementation of these lists
consists of several memories: a head store, a tail store,
and two memories that contain the forward and reverse
link pointers, respectively; these memories are summa-
rized later in this paper in Table 2. Thus, in the Cred-
itSwitch, each cell enqueue or dequeue operation
requires manipulating, at a minimum, six separate tables
to perform the two linked list operations. Simplified
pseudocode for these operations is given in Figure 1
(only the linked-list manipulation is shown; the code to
update the state tables has been removed for clarity).

This pseudocode shows that each enqueue/dequeue re-
quires accesses to each of the head, tail and link memo-
ries. Notice that in most cases these accesses follow a
pattern of read-modify-write (RMW) operations. For
example, the enqueued-cell-list tail memory (c_tail) is
first read (to index the link memory), then modified to
point to Caddr, then written back. Those operations that
do not require RMW can still be structured as RMW op-
erations by either ignoring the read data, or making the
modify cycle a no-op. Although not shown, all of the
state table updates can be structured as RMW operations
as well. We structure all memory operations as RMWs
in order to produce a simpler memory design for our im-
plementation, since in this case all the memories can be
identically-structured. Finally, since the CreditSwitch
operates under the constraint that no two incoming cells
destined for the same output port in the same cell cycle
can be on the same VC, no memory address will be used
for more than one RMW operation per cell cycle.

3.2 An MML Implementation of ATM
Routing Control
We now consider how to adapt the design of the Cred-
itSwitch’s routing control to an integrated MML design.
Note that we are considering only the control in this
paper; the datapath for the cell data payloads can be
implemented either with traditional DRAM or SRAM,
or with an IRAM/MML design [3]. The control cir-
cuitry processes only the cell headers, which comprise
1.4 Gb/s of external bandwidth. Internally, under worst-
case traffic load, nearly 5,000 bits of control memory in
the CreditSwitch are accessed every cell cycle (694 ns)
for a raw internal bandwidth of 6.7 Gb/s of mixed reads

Cell_enqueue(VC, Caddr) {
VC_enqueue(VC);
if (c_head[VC] != NULL)

c_link[c_tail[VC]] = Caddr;
else c_head[VC] = Caddr;
c_tail[VC] = Caddr;

}

VC_enqueue(VC) {
pri = priority_tbl[VC];
if (!active_tbl[VC] && credit_tbl[VC] > 0){

active_tbl[VC] = TRUE;
credit_tbl[VC] -= 1;
if (al_head[pri] != NULL) {

al_link[al_tail[pri]] = VC;
} else

al_head[pri] = VC;
al_tail[pri] = VC;

}
cellcount_tbl[VC] += 1;

}

Cell_dequeue() {
VC = al_head[top_priority];
VC_dequeue(VC, top_priority);
Caddr = c_head[VC];
c_head[VC] = c_link[Caddr];
c_link[Caddr] = NULL;
return(Caddr);

}

VC_dequeue(VC, pri) {
ncells = (cellcount_tbl[VC] -= 1);
newhead = al_link[VC];
al_link[VC] = NULL;
if (ncells == 0) {

al_head[pri] = newhead;
active_tbl[VC] = FALSE;

} else if (newhead != NULL) {
al_head[pri] = newhead;
al_link[al_tail[pri]] = VC;
al_tail[pri] = VC;

}
}

Figure 1: Pseudocode for basic ATM cell-handling operations. Cell_enqueue() and Cell_dequeue() add and remove cells from
lists of queued cells, respectively. VC_enqueue() and VC_dequeue() add and remove VC’s from the prioritized lists of active VCs.
See Table 2 for a description of each of the memories referenced in the pseudocode.

and writes. The CreditSwitch attains this internal
throughput with commodity parts by using 272 high-
speed SRAM parts (208 of which are dual-ported), 17
for each of the 16 ATM ports, plus at least 48 EPLDs
for control. The total amount of memory devoted to
state tables approaches 20 Mb. This circuitry is not only
extraordinarily expensive but incredibly complex.

There are two reasons why the CreditSwitch relies
on so many discrete dual-ported SRAMs. The first is
simple: the amount of table storage used in the routing
control (approximately 20 Mb across the 16 ports) is too
large to fit on a single ASIC. The second is more subtle:
in order to pipeline cell enqueue and dequeue opera-
tions, the various linked-list memories must be both
read and written in the same clock cycle. Since the cir-
cuitry implementing the modify operation is separate
from the SRAM storage on the CreditSwitch, dual-port-
ed SRAMs are required.

In contrast, MML provides both a large internal
memory (via its DRAM technology) and the capability
of integrating the modify-logic onto the same chip as the
memory. However, to replace the CreditSwitch’s dual-
ported SRAM with DRAM, we must overcome two lim-
itations of DRAM: its relatively large access time and
its refresh demands. We can take advantage of both the
flexibility of MML and the RMW-structure of the Cred-
itSwitch’s operations to solve both of these problems
and thus construct an integrated version of the Cred-
itSwitch’s routing control.

3.2.1 A RMW Pipeline for Cell Operations
To accomplish this, we have created a new pipeline
design that allows the required 16 enqueue and 1
dequeue operations (per-port) to be implemented
entirely in the form of pipelined RMW operations, with
the exception of the first read in cell_dequeue(),
which is optimized into a single memory read. As we
saw in the pseudocode above, all of the memory
accesses made in the CreditSwitch’s routing control can

be structured as RMW operations. A cell enqueue oper-
ation requires one RMW per cell-list head or tail mem-
ory; the corresponding VC enqueue operation can
require one RMW per active-VC-list head or tail mem-
ory. Both dequeue operations are more complicated,
since it is necessary to access the link memory (which
will take at least one full memory clock cycle) between
reading an entry from the head memory writing it back.
This access pattern to the head memory can be imple-
mented as two RMWs: during the first RMW, the read
data is written back without modification, and during
the second, the read data is ignored and the appropriate
value is written back. Thus a dequeue operation can be
implemented using the equivalent RMW operations as
two enqueue operations.

Our circuit will use a clock running at approximate-
ly 30 MHz, and thus a clock cycle of just over 33 ns.
This allows us 21 clock cycles per 694 ns cell cycle. To
implement all control processing in 21 clock cycles,
each of the 16 enqueue operations is staged into 3 pipe-
lined phases so that different phases of contiguous en-
queue operations can be executed at the same time.
Because dequeue operations can be implemented simi-
lar to two enqueue operations, we perform in total the
equivalent of 18 enqueues through a 3-stage pipeline.
Finally, since refresh cycles can also be structured as
RMW cycles with a null modify stage, the remaining 3
pipeline slots can be used to refresh the DRAM memo-
ries. We avoid data inconsistency problems between re-
fresh cycles and pending enqueue/dequeue operations
by detecting duplicate addresses and bypassing the re-
fresh, or by servicing the refresh read out of the data
latches rather than the DRAM bank itself. The reason
for these pipeline hazards and the bypassing technique
are described in Section 3.2.3. By using the free pipeline
slots for refresh, the maximum time between refresh for
any entry in the largest memory (c_link) is at most 60
µs. Table 1 shows how each of the routing control mem-
ories is used during each of the 21 total clock cycles.

Memory
Memory Usage in Each 33 ns Clock Cycle (0–20)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
al_head Dα E0 Dβ E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

al_tail E0 Dα E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

al_link Dα E0 Dβ E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

cellcount Dα E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

credit_tbl E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

active_tbl E0 Dα E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

c_head E0 E1 E2 Dα E3 E4 Dβ E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

c_tail E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

c_link E0 E1 E2 Dα E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

Table 1: Memory Usage in Routing Control Memories. This table shows how each RMW access to a routing control memory is
scheduled in the 21 33 ns pipeline slots available in each cell cycle. Each entry represents the time when a RMW operation is initi-
ated; each operation continues for two additional cycles before completing. The slots marked “Ex” represent a RMW involved in
enqueuing cell x; Dα and Dβ represent the two RMWs involved in dequeuing a cell. Empty slots in the pipeline are used for refresh.
Note also that, since al_head is implemented via a register file (see Table 2), the data from Dα is available as needed in cycle 1.

Thus, by using the RMW pipeline, we are able to
accomplish the required number of enqueues and de-
queues, while still using a cycle time that is long enough
to be attainable in MML’s DRAM process. Additional-
ly, as we will see in the next section, this pipeline is
well-suited for an MML implementation, as the DRAM
blocks in MML can be modified to support the simulta-
neous reads, modifies, and writes required by the pipe-
line.

3.2.2 Modifying MML’s DRAM Block to
Implement the RMW Pipeline
Because every table operation can be reduced to a
RMW, we have tightly coupled our RMW pipeline
design with our DRAM blocks. Our pipeline has three
phases, each requiring one clock cycle: the address
decoding phase, the read phase, and the modify and
write phase. Implementing this pipeline in DRAM
requires that the memory blocks be capable of simulta-
neously performing a decode on one address, a read on
another address, and a write on a third address.

Standard DRAM blocks cannot meet these access
criteria, and thus we have developed modifications to
the basic DRAM block structure to permit an implemen-
tation of our pipeline design. We begin by duplicating
all the peripheral circuitry of the memory banks: our
modified DRAMs have two address decoders, two latch/
drive blocks, and two modify blocks (the logic that per-
forms the modification in a RMW cycle). We will refer
to these groups of circuits as components A and compo-
nents B. We use a 1-bit counter to determine which set
of components are used during each clock cycle. We
also alter the timing of the DRAM to make it possible to
perform one read and one write operation in the same
clock cycle. Finally, we add two pipeline registers, one
for each group of circuits, between the address decoders
and the DRAM block; these hold the decoded addresses
for use in later cycles of the pipeline. These registers
cannot be implemented as traditional SRAM blocks,
since they must be pitch-matched with their correspond-
ing DRAM cells (1µm in height). In order to deal with
this problem, we propose a design for the basic cell of
these pipeline registers in Figure 2.

The original CreditSwitch required dual-ported
memories because its design often mandated a read and
a write to the same memory in one 33 ns clock cycle; our
pipeline has a similar constraint. Since our design al-
lows us to enhance the basic structure of a DRAM block,
we use the following tricks to simulate dual-ported
SRAM within our MML-DRAM design, as shown in
Figure 3:

• Use two row address decoders instead of one
found in standard DRAMs.

• Use two column address decoders instead of one
found in standard DRAMs.

• Latch the output of these decoders so that is can
be used in subsequent clock cycles.

• Use two sets of output latches and drivers,
instead of one found in standard DRAMs.

• Split up the memory into 128 x 256 blocks, so as
to reduce the time required to drive the bit and
the word lines. Table 2 shows how each output
port’s table memory is divided into these blocks.

In addition to the above we implement two circuits that
do the modification part of the RMW operation and a
simple finite state machine (Cnt) for determining which
set is active during every clock cycle. Each of these cir-
cuits is associated with one particular set of the mem-
ory’s peripheral circuit. It is activated along with the
corresponding set of memory drivers in the same clock
cycle.

SRAM
(Register)

Cell

SRAM
(Register)

Cell

SRAM
(Register)

Cell

SRAM
(Register)

Cell

A1 A0

Enable

WordLine0

WordLine1

WordLine4

WordLine3

SRAM
(register)

cell

A1

CLK

A0

Figure 2: Pipeline Register Implementation (not to scale):
These registers store the last decoded address. In order to sat-
isfy pitch-matching constraints, we use one SRAM cell for
every four cells of DRAM memory, one 2-input NAND gate
for every two DRAM cells, and one pass gate (2 NMOS tran-
sistors) per DRAM cell. The four AND gates allow us to
tristate the word lines. Although this circuit requires driving
a word line through a pass gate (a potentially slow method of
asserting a word line), this is the way the word lines are
driven in many commercial DRAM chips.

Renable (decoded MS bits
 IVC[8:7])
Renable (decoded MS bits

Renable (decoded MS bits
 IVC[8:7])
Renable (decoded MS bits

 Circuits
Latches, Drivers, Modify

 Circuits
Latches, Drivers, Modify

RdecA
DRAM

BlockR
e
g
A

CmuDecA CmuDecB

RdecB

R
e
g
B

Cnt

Word LinesWord Lines

Enable_Right Enable_Left

IVC[6:0]

IVC[16:9] IVC[16:9]

IVC[6:0]

Sense Amplifiers

Caddr or c_link[IVC]
(input) (input)

Caddr or c_link[IVC]
c_head[IVC] c_head[IVC]

(output) (output)

SRAM
(Register)

SRAM
(Register)

Vdd

PhiL
Precharge

PhiS

Vref

Sense
Amplifier

Word Line

Bit Line

Input

Precharge

Read * right_enable | Right_bypass

Read * left_enable | Left_bypass

DRAM
Cell

Precharge
Circuit Vref

Modify Circuit

Modify Circuit

Column_enable

Column_enable

Write * left_enable

Column_enable

Write * right_enable

Column_enable

Out * left_enable

Output

Out * right_enable

Figure 3: Diagram of Basic Memory Block. The DRAM block is an ordinary 32 Kbit DRAM array, structured as a 128 x 256 bit
array. The sense amplifiers are unmodified. RdecA and RdecB are decoders that drive the word lines. CmudeA and CmudeB are col-
umn multiplexors/demultiplexors. RegA, RegB, are pipeline registers used for storing the outputs of the decoders and the multi-
plexors/demultiplexors which are used in the other phases of the pipeline. The two sets of latches, drivers and modify circuits latch
the output data of the read phase, and modify and write the output data on the write-modify phase of our pipeline. Finally, the cnt
counter is used to determine which set of components is activated every clock cycle. A bit slice of the circuitry at the bottom of the
DRAM block is shown on the right; note in this diagram that each “out” signal (one for each latch) is ANDed with the opposite
enable signal (the signal for the other latch) to allow reading from one latch while the other writes its data into the memory. See the
timing diagram in Figure 4 for more details on the sequencing of these signals.

Group Use of Memory Size Memory Layout

Table of Active VC Lists

Head Memories (al_head) 32x14 Register File

Tail Memories (al_tail) 32x14 Register File

Status of list (status) 32x1 Register File

Lists of Active VCs Link Memories (al_link) 8Kx14 4 Blocks

State per VC

Credit Count (credit_tbl) 8Kx8 2 Blocks

Cell Count (cellcount_tbl) 8Kx8 2 Blocks

Flags 8Kx2 1 Block

Active List ID 8Kx6 2 Blocks

Per-VC Queues of Cells
Head Memories (c_head) 8Kx16 4 Blocks

Tail Memories (c_tail) 8Kx16 4 Blocks

Lists of Queued Cells Link Memories (c_link) 32Kx16 16 Blocks

State per Queued Cell Ownership Memory 32Kx4 4 Blocks

Table 2: Per-Port Memory Usage within Switch. For each port, our design requires 39 128x256 bit blocks (and three register
files), for a total of 1248 Kb per port. To implement a 16-port switch requires 19.5 Mb, allowing us to implement our design in
either a 32 Mb or 64 Mb DRAM process with enough space for logic. The entire switch also requires one master routing table of
8Kx40, using an additional 352 Kb of memory (11 blocks).

3.2.3 Memory Timing
The data flow and organization in our pipeline is the
following; an overview of the signal timing is presented
in Figure 4:

• Use a counter to determine whether we are using
the A or the B component set. Without loss of
generality, let us assume that we use the A set.

• In the first clock cycle, we decode the row and
column address, writing the results in the
corresponding pipeline register.

• In the second clock cycle, activate the
appropriate word line to read the desired data
from the memory. Enable the sense amplifiers,
latch the row of data, and use the decoded
column address to enable the outputs
corresponding to the portion of the row that
contains the data that we actually want.

• In the third clock cycle, first modify the
previously read data. Then reactivate the
appropriate word line (the same one used in the
second clock cycle). Finally, drive the word lines
so as to write the actual data back in the memory.

This pipeline has several subtleties. First, due to the
overlap between adjacent operations, we attempt to per-
form both a read and a write-modify to the same mem-
ory (at different addresses) in one clock cycle. To
achieve this, we take advantage of the fact that a
DRAM write operation can be done without first pre-
charging the bit lines. Instead, we can simply drive the
bit lines with the desired values.

Another subtlety arises from the size of the DRAM
blocks. We have split our DRAM into small blocks (128
x 256 bits) to yield shorter bit and word lines, allowing
us to drive them faster. However, since our widest tables
are only 16 bits wide, we must place several table entries
in each line of DRAM to efficiently use the blocks. With

this change, our assumption that different RMW opera-
tions are at different addresses no longer holds, since
different table addresses can map to the same DRAM
line. As a result, data inconsistencies are possible if an
operation reads data at a given address before the prior
operation writes back modified data at that same ad-
dress.

To solve this problem, we introduce some extra cir-
cuitry to detect duplicate addresses and, in that case, to
service the second operation’s read from the latches
holding the modified data from the first operation. In
other words, if we see that the second RMW falls in the
same row as the first one, we wait until the data from the
first RMW are driven into the bit lines, then enable the
bypass signal seen in Figure 4, allowing the data to be
latched by the second set of row latches. By doing so, no
overwriting of data is possible.

Finally, the modifications we made to avoid data in-
consistency allow us to insert memory refreshes (struc-
tured as RMWs with a null modify) at any free pipeline
slot without the fear of writing back inconsistent data.
Since each memory has at least three open slots, we can
refresh three lines every 694 ns; each memory block is
256 lines long, so if they are refreshed in parallel, the en-
tire memory can be refreshed once every 60 microsec-
onds. Note also that the main routing table (which routes
incoming cells to the appropriate output port for queue-
ing) can be refreshed in a similar amount of time.

Notice that the timing presented in Figure 4 is in
fact very conservative. We can see why this is true by
comparing our timing with that of a standard 64 Mb
DRAM, which is the technology upon which we have
based our calculations. The 64 Mb DRAM uses basic
blocks of size 256 x 512. In this basic block the length
of a word line is approximately 500 µm and the width
approximately 0.4 µm. The resistance per square µm of

8ns

8ns

4ns

4ns

Precharge

Sense Amplifiers

Bit Line Drivers

1ns

Column_Enable

Bypass (if needed)

3ns

9ns

7ns

Write Word Line,

Read Word Line,
Read

Write, Out

Figure 4: Overview of Signal Timing for RMW-optimized DRAM. The modified DRAM operates with a cycle time of 33 ns; in
each cycle, the memory is both read and written, as can be seen in the timing diagram. Note that the read and write are in most
cases for different rows, with the two addresses coming from the decoder latches shown in Figure 3.

the polyside used for the word lines is 12 Ω/µm2. So in
their case the total resistance of the word line is (500 µm
/ 0.4 µm) ∗ 12 = 15KΩ. The capacitance of this line is
0.25 pF and so the RC delay of the word line is 15 KΩ
∗ 0.25 pF ≈ 3.75 ns. The specified time to assert the
word line is approximately 9 ns, which includes a safety
margin of about 2.5 times.

In our MML design, we have 128 x 256 bit basic
blocks. Since our word lines are half the length of those
found in 64 Mb DRAM, both their resistance and capac-
itance are correspondingly reduced by a factor of two.
As a result, the time needed to assert a word line is about
four times smaller in our design than in standard
DRAM. Therefore, we can conceivably assert our word
lines in only 2.5 ns. We have allotted 4 ns, as seen in
Figure 4. Additionally, we have allowed 1 ns for the
deassertion of the word line, which is a sufficient
amount of time to lower the word lines through one
NMOS transistor to the threshold voltage. We can lower
the lines to 0 Volts during the time that another bit line
is open (in other words we can have some limited over-
lapping between the assertion of the write word line and
the deassertion of the read word line).

Similarly, standard DRAM requires 15 ns to se-
curely precharge the bit lines. Once again, we have a
two-fold reduction in size, which creates a four-fold re-
duction in precharge time, resulting in a minimum pre-
charge of about 4 ns for our design. As can be seen in the
timing diagram, we have allotted 7 ns. In the case of a
write, ordinary DRAM allows 25 ns to drive the bit
lines; since our bit lines are half the length, we need only
25/4 ≈ 6 ns, and we allocate 8 ns.

Finally, we allocate the same amount of time to the
sense amplifiers as does standard 64 Mb DRAM (9 ns).

Notice that we have allowed large safety margins in
our timing as compared to standard DRAM. If these
safety margins are reduced, our design is capable of sus-
taining a memory cycle time of 22 ns, or a 45 MHz
clock. Additional hardware changes to implement two-
stage sense amplifiers would allow the clock to rise to
59 MHz; the first stage would be decoupled from the
word lines after 3 ns and the second stage would take
over. However, neither of these enhancements is neces-
sary for our ATM switch application.

4 Conclusion
The main benefit of integrated DRAM and logic
(MML) is the potential for relatively high internal
memory bandwidth on a single chip. Many applications
involving frequent table lookups or hardware linked-list
manipulations can benefit from this high internal band-
width. It was in researching one potential application of
this advantage of MML, ATM switching, that we dis-
covered a second advantage: the ability to simulate
SRAM-like latencies and emulation of dual-ported
SRAM with DRAM. Being able to place logic on a
DRAM chip enables the use of more complicated mem-
ory structures—such as the special memory we have

described in this paper. Using these techniques we can
further increase the internal bandwidth and decrease the
latency of on-chip memory.

We have examined the significant effects this can
have for a proposed ATM switch. There are many other
applications for which it could be useful, such as hard-
drive controllers and encryption devices. For the ATM
switch, we are able to replace a device that uses over 300
separate chips with a single cheaper chip without a per-
formance loss, and we expect similar gains can be made
in other applications as well. In short, by integrating log-
ic with memory, we have shown that with certain as-
sumptions, one can replace SRAM with integrated
DRAM and retain the best of both worlds.

5 References
[1] Blackwell, T., K. Chan, K. Chang, T. Charuhas, B.
Karp, H.T. Kung, D. Lin, R. Morris, M. Seltzer, M.
Smith, C. Young, O. Bhagat, M. Chaar, A. Chapman,
G. Depelteau, K. Grimble, S. Huang, P. Hung, M.
Kemp, I. Mahna, J. McLaughlin, M.T. Ng, J. Vincent, J.
Watchorn. “An Experimental Flow-Controlled Multi-
cast ATM Switch.” Proceedings of the First Annual
Conference on Telecommunications in Massachusetts,
1994.

[2] Blackwell, T., K. Chang, H.T. Kung, and D. Lin.
“Credit-Based Flow Control for ATM Networks.” Pro-
ceedings of the First Annual Conference on Telecom-
munications in Massachusetts, 1994.

[3] Brown, A., I. Papaefstathiou, J. Simer, D. Sobel, J.
Sutaria, S. Wang, T. Blackwell, M. Smith, and W. Yang.
“An IRAM-Based Architecture for a Single-Chip ATM
Switch.” Technical Report TR-07-97, Center for
Research in Computing Technology, Harvard Univer-
sity, 1997.

[4] Patterson, D., T. Anderson, N. Cardwell, R.
Fromm, K. Keeton, C. Kozyrakis, R. Thomas, K.
Yelick. “A Case for Intelligent RAM: IRAM.” To
Appear in IEEE Micro, April 1997.

[5] Rambus, Inc. “RAMBUS and UMA: The Win/
Lose Debate.” http://www.rambus.com/docs/uma.pdf.

[6] Rambus, Inc. “Rambus Memory: Multi-
Gigabytes/Second and Minimum System Cost.” http://
www.rambus.com/docs/mpf96.pdf, 1996.

