Porting NetBSD to the Sun4m/SPARCstation-20: Issues & Status

Aaron B. Brown
Harvard University
abrown@eeecs.harvard.edu
Why are we porting NetBSD?

- To provide a modern, high-performance home for BSD research
- To provide Margo Seltzer with a high-performance testbed for filesystem work
- To learn about the architecture of the Sun4m so we can do a VINO port
Where are we today?

Work Starts

6/12

NetBSD up on SS1

6/21

SS10's installed

7/21

Kernel boots to C level

7/25

Cross-compiler developed

8/3

SS20's arrive

8/9

Network boot single-user

8/11

Drivers done

8/14

WE ARE HERE

NetBSD 3 of 17
What is NetBSD?

- **Heritage**
 - 386BSD
 - 4.4-Lite2 BSD

- **Maintenance & Development**
 - Volunteer effort with corporate support
 - Master source repository
 - Core group
 - Releases: 1.0 and -current

- **Architecture**
 - Monolithic kernel
 - Structured for portability
 - Existing Sun4c port

- **Generic Kernels**
Sun4c vs. Sun4m

• What’s Changed?
 • CPU (ILU)
 • MMU
 • DVMA
 • Interrupts
 • Device Support
 • FPU
 • Multiprocessing

}
Sun4m support complete

{ Work in progress

Not yet started

NetBSD 5 of 17
The Sun4m MMU

- SPARC v8 Reference MMU
- Architectural similarities to old Sun MMU
 - contexts
 - paged memory
 - single-word translations/page table entries
- Significant architectural differences
 - Software vs. hardware translation tables
 - protection model and bit definitions
- Other differences
 - trap & fault registers
 - TLB
 - cache models
SRMMU Page Translation

- **MMU**
 - `curr_ctx`
 - `ctx_tbip`

- **Context Table**
- **Region Table**
- **Segment Table**
- **Page Table**

VA: 0xf81037a0 (context 5)

- 11111000 00001000 0000011 111101000000

Physical Pointer
The Kernel View Of The SRMMU

NetBSD 8 of 17
DVMA and I/O

- DMA vs. DVMA
- IOMMU
- Kernel I/O locations
- Mapping buffers for DMA
- Coherency issues
- I/O-Cache (?)
Interrupts and I/O

- New interrupt control registers (ICRs)
 - mask and generate interrupts
 - one SYSTEM register set: hardware interrupts
 - many PROCESSOR register sets: software interrupts and inter-CPU signalling

- Few advantages to single-CPU kernel

- Future advantages
 - atomic mask updates
 - per-processor soft interrupts
 - inter-processor communication via L15 soft interrupt
Devices

- 36-bit physical addressing
 - or, “dirty little implementation secrets”

- Devices fall into two main categories
 - On-Board I/O (OBIO)
 - simple, mappable, no DVMA
 - SBus-attached
 - complex
 - heavy use of DVMA and the IOMMU
 - strict timing constraints
OBIO Devices & Driver Status

+ counters: working in single-CPU mode
+ serial ports, keyboard, mouse (zs): working
+ power: working
+ auxio: working
 – fd: not working (no drive)
 – eccmemctl: not working (no clue how it works)

• framebuffers:
 + bwtwo, cgthree, cgsix: working
 – cgeight, cgfourteen (SX): not working (no docs)
SBus Devices & Driver Status

~ Ethernet (ledma): almost there
– SCSI (espdma): not working
– Parallel port (bpp): not working
– Audio (DBRle): not working
FPU Support

- Not an immediate kernel issue
- Pipelined FPU => complicated trap processing
- Mfr. support (source or object) often needed in research group ports
Multiprocessing

- Directly supported in Sun4m architecture
- Problems for NetBSD support
 - non-threaded, multiprocessor-unsafe kernel
 - no existing MP-safe locking primitives
- Currently low priority
 - working single-CPU kernel comes first
Bootlog
Conclusion

- Future looks good
- Single-user kernel soon
- Multi-user to follow quickly